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1 INTRODUCTION 

SFSS is a set of C++ base classes and a host of accompanying infrastructure from which 
parallel warfare simulations can be built. One could, for example, use these generic 
classes to define various types of planes, ships, ground forces, commanders, fixed 
facilities, etc. and then simulate scenarios comprised of these entities. 
 
Although moderate in scope, these classes were designed to be the foundation of a 
thoroughgoing framework for constructing warfare simulations. Thus, in addition to 
being functional in its own right, the software should prove to be easily extended to 
accommodate an increasingly detailed, powerful and elaborate library of classes. 
 
The library of SFSS classes is based on the parallel simulation framework called 
SPEEDES (Synchronous Parallel Environment for Emulation and Discrete-Event 
Simulation). This means that some classes derive from and/or utilize SPEEDES classes, 
and that the SPEEDES methodology is used to coordinate concurrent activities taking 
place on multiple CPUs. These processors can be located in a high-performance 
multiprocessor, a group of connected workstations, or a combination of the two. Other 
advantages deriving from SPEEDES include: 
 

• Optimistic processing and an accompanying library of rollbackable classes. 

• Automated data distribution and filtering. 

• The ability for separate programs to connect into the simulation, thus providing a 
“window” into the current state, and also allowing some external control. 

• An HLA “gateway” that allows a simulation to participate in an HLA federation. 

• Facilities for dynamically creating simulation objects during the course of the 
simulation. 

2 WARFARE MODELING FRAMEWORK 

As was mentioned above, the SFSS classes have been designed as part of a general 
scheme for doing warfare modeling. In this section, we present a brief overview of this 
scheme. Having the “big picture” in mind will serve two purposes: first, it will make 
clear how the existing SFSS classes form the basis of a force structure simulation 
framework, and second, it will point the way toward possible future extensions of this 
work. 
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2.1 Essential Elements of Warfare Modeling Framework 

In this section, we introduce the salient entities from which warfare simulations are 
constructed. These include commanders, assets, asset subsystems, measures of 
effectiveness, and the interaction database. 

2.1.1 Commanders 

A commander is an entity that controls a set of assets and subordinate commanders. 
These forces are deployed by the commander in order to achieve one or more objectives. 
In addition to its controlled forces, commander objects have a plan, a tactical picture, and 
a tactics table. A plan consists of a sequence of actions the commander intends to carry 
out, the purpose of which is to accomplish one or more of the commander's objectives. 
The tactical picture represents the commander's perception of the current situation (as 
opposed to the actual situation). It integrates a priori knowledge and information from 
sensor reports into a unified picture, some of which may be incorrect. The tactics table 
contains a set of rules that tell the commander how to react to situations represented in 
the tactical picture. Applying such rules to the current tactical picture enables the 
commander to dynamically respond to events as they unfold during the course of the 
simulation. 

2.1.2 Assets 

An asset is the basic fighting unit in a simulation. The two main types of assets are fixed 
assets and mobile assets (i.e. stationary and movable units). Examples of the former 
include airfields, sea ports, radar facilities, and fixed SAM sites. Examples of the latter 
include planes, ships, and tanks. 

2.1.3 Asset Subsystems 

An asset subsystem is an entity that provides a capability to an asset. Examples include 
sensors, weapons, and communications devices. 

2.1.4 Measures of Effectiveness (MOEs) 

An MOE is a metric collected during the simulation summarizing how well (or poorly) 
objectives have been achieved. Examples include the number of enemy assets killed, the 
number of friendly assets killed, the ratio of enemy assets killed to friendly assets killed, 
the number of engagements, the probability that some objective is achieved, the time 
required to achieve an objective, etc. 

2.1.5 Interaction Database 

The Interaction Database contains information needed to simulate the interaction between 
certain types of objects. A sensor probability of detection (Pd) table, for example, might 
be included in the database. This table would specify the probability that a given type of 
sensor detects an object, based on the object type and the distance from the sensor (and 
possibly other factors). 
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2.2 Define the scenario 

Assume that there are two opposing alliances, referred to as “Red” and “Blue.” Defining 
the scenario means specifying all the Red and Blue assets, building a hierarchy of 
commanders, assigning assets to the commanders, and devising plans for some or all of 
the commanders. This constitutes the initial state of the simulation. The initialization data 
can be read in from input files or entered using a graphical interface. 

2.3 Simulate Until End Time 

Once the initial simulation state has been entered, execution can begin. Commanders 
deploy forces according to their plans. Sensors detect, identify, and classify objects, and 
report to commanders. This information is integrated into the commanders' tactical 
pictures. 
 
Simulation events are generated by commanders executing plans. Also, as the tactical 
picture evolves, tactical rules are activated, thus generating other events. These events 
alter the simulation state, changing the tactical pictures of commanders, thus generating 
more events. This cycle repeats until the simulation end time is reached. 
 
Meanwhile, MOE data is collected as the simulation is running. When the end-time of the 
simulation arrives, the MOEs are calculated and output. This is the main purpose of the 
whole exercise--to measure various effects and outcomes of a simulated scenario in order 
to get a feel for what would happen if the scenario were to take place in the real world. 

3 THE SFSS BASE CLASSES 

We have developed a set of generic C++ classes from which warfare simulations like 
those described above can be constructed. These are SPEEDES simulation objects, so 
instances of derived classes can be distributed among two or more processors (and their 
activities logically coordinated), thus producing a parallel simulation. This relieves the 
programmer from the difficult task of managing the communication and coordination of 
processes running concurrently on many CPUs. 
 
The following sections provide descriptions of the most significant of the SFSS classes. 
To help understand these descriptions, a few key terms must first be defined: 
 

• Publish: When a simulation object publishes itself, it announces that it is making 
part of its state publicly viewable by other simulation objects that are interested in 
this information. 

• Subscribe: This is the complement of publish, except done with respect to object 
classes. That is, when a simulation object subscribes to a class, it is asking 
SPEEDES to inform it of the existence of all simulation objects of that type, and 
to provide updates of the state of these simulation objects. 
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• Attribute: The elements of a simulation object's state that are to be made public 
for subscribers are called its attributes. For example, a ship simulation object 
could have a name, id number, position, course, and speed attributes (among 
others). Note that a simulation object's attributes are just the part of the object that 
it wishes to advertise, and not necessarily the entire state of the simulation object. 

• Discover: When a simulation object is created, all subscribers to that class are 
informed of the existence of the new simulation object. This is called discovering 
a simulation object. 

• Reflect: When a simulation object modifies one or more of its attributes, 
subscribers to that class are informed of the new attribute values. The subscribers 
are said to reflect the updated state of the object. 

3.1 Public Objects 

This is the base class for classes that need to publish themselves and/or subscribe to other 
classes. This class (called S_PublicObj) automatically publishes itself, and contains 
four (public) attributes for identifying the object: a name, a type, an object ID, and an 
alliance. The name is a character string; the other three attributes are integers. These 
attributes are assigned by the user to identify public objects. It is assumed that the name 
uniquely identifies the object (no two objects should have the same name), as does the 
(type object ID) pair. The alliance attribute specifies which side the object is allied with 
(e.g. Red, Blue, or White). 
 
Public objects can subscribe as well as publish. The S_PublicObj class has utilities for 
looking up information about discovered objects. 

3.2 Assets 

This class (called S_Asset) is the base class for building classes to model military 
assets. Since it inherits from S_PublicObj, it publishes itself. In addition to the 
identifying attributes inherited from S_PublicObj, the asset class adds the following 
attributes: a commander, a status, a sensor list, and a weapon list. The commander refers 
to the asset-level commander controlling this asset (e.g. the pilot in a plane). The status is 
an integer attribute that can be used as desired to indicate the state of the object (e.g. 1 for 
operational, 0 for non-operational, etc.). The sensor list attribute is a list of sensor 
subsystems owned by the asset. The weapon list attribute is a list of weapon subsystems 
on the asset. The list attributes can be empty (i.e. contain 0 items) or arbitrarily large. 
 
Since assets represent fighting units, they must be able to engage other entities and model 
what happens when they are struck by a weapon. The S_Asset class contains a virtual 
method for engaging other assets and one for simulating weapon hits. Derived classes 
must implement these virtual methods in order to customize the behavior of the asset. 
 
An event has been defined that calls the “engage” method. This means that other objects 
can schedule an engage event on an asset. A commander object can use this mechanism 
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to order an asset to engage a target. Likewise, an event has been defined that calls the 
“weapon hit” method. This event can be scheduled on an asset involved in an 
engagement. For example, if an asset fires a weapon at a target and determines that the 
weapon actually struck the target, it schedules a “weapon hit” event on the target. The 
target would assess the damage, and possibly return fire. 

3.3 Fixed Assets 

This class (called S_FixedAsset) inherits from S_Asset, and augments it with a 
location attribute. The location contains the latitude, longitude, and altitude of the object. 
This class generally will be used to build classes representing objects that have an 
absolutely fixed location, such as an airfield or a seaport. However, since the location 
attribute can be changed, this class can be also used to represent objects that move 
infrequently. In these cases, changing the location will result in a discontinuous jump 
from one position to another. Although this is totally unrealistic, in some circumstances it 
may be acceptable to do this. In all other cases--where a continuous motion model is 
needed--the mobile asset class is the one to use. 

3.4 Mobile Assets 

This class (called S_MobileAsset) inherits from S_Asset, and augments it with a 
motion script attribute. This attribute defines a continuous track that specifies the exact 
position of the asset over an interval of time. The motion track is defined by a sequence 
of great-circle legs from point P0 to P1, P1 to P2, P2 to P3, etc., where each point is a 
(latitude, longitude, altitude) triple. 
 
The mobile asset class has methods for setting or altering the motion script, and for 
calculating the location of the asset at a given time. Also, events have been defined that 
alter the motion script of the mobile asset on which it has been scheduled. These can be 
used by commanders to vector a mobile asset to a location or sequence of locations (that 
is, down an entire track). 

3.5 Commanders 

The S_Commander class inherits from S_PublicObj to which it adds three data 
members: a plan, a tactical picture, and a tactics member (note that these are not public 
attributes). These three members correspond to the capabilities described above. Every 
commander should be able to devise a plan, keep a representation of his knowledge of the 
current situation, and use tactics to respond dynamically to the current situation. 
 
Of these three capabilities, only the planning has been developed to a significant degree 
in the current SFSS version. The plan member keeps a time-stamped, ordered list of 
actions that the commander intends to carry out. The S_Commander class has methods 
for adding actions to the plan, and for executing plan actions. Also, there are methods for 
planning two specific actions: vectoring a mobile asset and ordering an asset to engage a 
target. 
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Two subclasses of S_Commander have been implemented: S_MissionCommander 
and S_AssetCommander. The former represents a high-level commander directing an 
entire mission area such as air warfare, surface warfare, strike warfare, etc. The latter 
represents the commander of an individual asset, such as a pilot or ship captain. 
 
The mission commander class adds three (public) attributes to the S_Commander class: 
an integer indicating his mission area, a list of controlled assets, and a list of subordinate 
commanders. This reflects the fact that a mission commander is in charge of a group of 
assets and subordinate commanders. The S_MissionCommander will make plans to 
deploy its assets and subordinate commanders, and will have high-level tactics that direct 
these forces. 
 
The S_AssetCommander class is just an S_Commander with an asset reference 
(public) attribute. This attribute provides a “handle” for identifying the asset it commands 
and for scheduling events on it. While developing the code, serious questions arose 
regarding the wisdom of having separate simulation objects represent the asset and the 
commander. In a future version, we may wish to fuse the two into a single object. 

3.6 Asset Subsystems 

Simulation developers can create private subsystems without having to do anything 
special (above and beyond the usual SPEEDES methodology regarding rollbackability, 
etc.). However, if there are attributes within the subsystem that need to be public, a 
specific procedure must be followed to create such classes. 
 
An asset subsystem is basically just a sub-object that contains public attributes; this sub-
object is part of, or controlled by, an asset object. Examples of asset subsystems include 
sensors, weapons, and communications systems. Each of these has its own attributes and 
is part of an asset such as a plane or a ship. There are two ways that a subsystem is 
incorporated within an asset: it can be an attribute of the asset or else an item in a list 
attribute that is part of the asset. For example, the S_Asset class has a list of sensors 
and a list of weapons. Each of the sensors in the list is itself a subsystem (or sub-object) 
that has public attributes. 
 
The Subobject class has been created in order to help build public asset subsystems. 
The Subobject class has two attributes--an integer type and integer ID--that are 
published automatically. These are provided to identify the subsystem. 
 
To create subsystem classes, the developer needs to have the class inherit from the 
Subobject class and follow the procedure for creating classes inheriting from the 
SPEEDES OBJECT_ATTRIBUTE class. Examples of how to do this are provided by the 
Sensor and Weapon classes. 
 
The Sensor class is a generic base class for building sensors. It inherits the type and ID 
attributes from the Subobject class and adds a range and status attribute. The range is 
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the maximum distance that the sensor can detect objects. The status is an integer attribute 
that can be used as desired (e.g. to denote whether the sensor is operating or not). 
 
The Weapon class is a generic base class for building weapons. It inherits the type and ID 
attributes from the Subobject class and adds three more: a range attribute, a weapon 
speed attribute, and a status attribute. The range is the maximum distance from the target 
that the weapon can be used effectively. The weapon speed denotes the average speed of 
the weapon moving to the target. The status is an integer attribute that can be used as 
desired (e.g. to denote whether the weapon is operating or not). 

4 TECHNICAL REFERENCE OF CLASS INTERFACES 

The “Synthetic Force Structure Simulation Class Reference Manual” documents the 
public and protected interfaces of the SFSS classes. For each class, there are two sections, 
one giving a brief description and another giving a detailed description. The classes are 
arranged alphabetically, but there is also a hierarchical index. The latter is most 
reasonable way to approach the mass of documentation. 
 
The classes can be divided into a few groups: 
 

1. Simulation objects: These are the most important classes; they are classes for 
building public simulation objects. All descend from the SPEEDES S_SpHLA 
class, and have names that begin with S_ (which denotes the fact that they 
represent simulation objects). 

2. Proxies: For each simulation object class, there is a corresponding proxy class to 
represent simulation objects of this type. This is what subscribers receive when 
they discover instances of these classes. Also, there is a proxy class representing 
SIMOBJ_REFERENCE attributes. These attributes contain a series of IDs needed 
for referring to simulation objects.  

3. Object Attributes: These are attributes which themselves contain public attributes. 
All inherit from the SPEEDES OBJECT_ATTRIBUTE class. Included in this 
group are Subobject classes (sensors and weapons), and 
SIMOBJ_REFERENCE classes.  

4. Supporting Classes: This group includes the plan class, action classes, track point 
classes, and the announcement message class (used by assets to declare 
themselves to commanders). 

5 A DEMO SIMULATION 

In order to demonstrate how to use the SFSS base classes, a small simulation was 
assembled. Building on SFSS, classes representing airfields, jets, missiles, and an air 
warfare commander were created. Forces are divided into two alliances, a Red side and a 
Blue side. 
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The simulation scenario runs as follows: 
 

1. During the initialization phase, input data is read, and simulation objects are 
created and initialized. The scenario has two Red airfields, five Blue jets (each 
carrying missiles), and one Blue air warfare commander. 

2. The Blue air warfare commander creates a plan to strike the two Red airfields. 
This consists of sending one jet to attack one of the airfields, and another to attack 
the other airfield. 

3. The Blue air warfare commander executes his plan. This vectors the two jets 
toward the two Red airfields, and later issues engage orders to both. 

4. The jets take off and fly along their assigned tracks. When given the order, they 
each engage their respective targets. This causes each to fire two missiles at the 
airfield. A random draw determines if a missile succeeds in hitting the target. 
Each time a missile hits, an event is scheduled on the target. This event 
determines how much of the airfield has been damaged, and how much is still 
operational. The percentage of the airfield's capability that is operational is 
assigned to the object's Status attribute. Subscribers to airfields can therefore 
“see” the damage level of each airfield. 

 
Please refer to the “SFSS Demo Reference Manual” for a detailed description of the 
interfaces for the airfield, jet, missile, and air warfare commander classes. This report is 
in the same format as the one describing the SFSS classes in the Synthetic Force 
Structure Simulation Class Reference Manual  

6 FUTURE WORK/DIRECTIONS FOR SFSS 

This report began with an overview of the SFSS classes, describing in general terms what 
they are and how they can be used to build parallel warfare simulations. Then, a simple 
example simulation was detailed to show some specifics of how the SFSS classes can be 
used. Finally, a detailed description of the class interfaces was presented.  
 
The point of these prior sections was to show how SFSS provides the basics for building 
parallel simulations. In this section, we wish to supply some ideas for ways in which 
SFSS can be augmented with additional capabilities in order to make it more powerful 
and easier to use. 

6.1 Communications Modeling 

Currently, the SFSS classes do not contain any communications modeling. For example, 
a commander can vector a mobile asset simply by calling a method (which, in turn, 
schedules an event on the asset object). In reality, there must be some kind of 
communications link in order for a commander to issue an order to an asset. There are 
bandwidth limits, delays, and reliability issues associated with any real-world 
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communication system. These factors can have significant consequences in many 
scenarios. Therefore, one possible extension for SFSS would be to include some form(s) 
of communications modeling. Ideally, there would be two or more levels of resolution in 
the model classes. This way, developers could choose the degree of communications 
complexity (or “resolution”) required by their simulation. At one end of the spectrum, 
there could be very detailed communications modeling; at the opposite end, there would 
be little or none. 
 
Since AFRL is developing communications models, it may be possible to leverage this 
work by integrating all or part of this work into SFSS. 

6.2 Tactics 

In order to be able to respond to dynamically evolving situations, commanders need a set 
of rules to guide them. The S_Commander class has a generic TacticsObject 
member for this purpose, but the class is stubbed out. What is needed is an object in 
which developers can insert tactics rules that will be activated when relevant situations 
arise. 
 
The general form of a tactical rule is: 
 

IF Condition THEN Action; 
 
where Condition is a Boolean expression, and Action is a function or method. The 
meaning of this is: whenever Condition is satisfied by the current situation, execute 
Action. Building a coherent ensemble of these simple IF-THEN rules is actually a very 
general mechanism (as powerful, in fact, as the usual programming languages), and 
forms the basis of so-called “expert systems,” which use large collections of such rules to 
mimic the subtle behavior of an expert. The point is that by assembling a set of such 
rules, one can create arbitrarily sophisticated tactical responses. At the simplest level, 
each rule would have an associated “trigger-event” that would execute an action 
whenever the event was scheduled on the object (i.e. the occurrence of the event is, in 
effect, the Condition part of the rule). 
 
At a higher level of complexity, each rule could have an integer precedence value 
associated with it. This way, if two or more rules are applicable to a given situation (i.e. 
their part Condition is satisfied), the one with the highest precedence is executed. A 
special case of this is a list of rules ordered from high to low precedence. The first rule 
whose Condition is satisfied would be selected for execution. At an even higher level of 
complexity, we encounter the idea of meta-rules, which are higher-level rules about how 
to apply lower-level rules. Examples include a meta-rule that changes the precedence of 
lower-level rules, or one that selects for consideration a subset of the rules, and eliminates 
the others as irrelevant to the current situation. 
 
Clearly, the implementation of a rule-based tactics class can become arbitrarily large and 
complex, depending on how sophisticated the tactics modeling needs to be. A good way 
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to start would be to build something fairly simple like event-triggered rules, or perhaps a 
small list of precedence-ordered rules. Then the challenge will be to define the rules and 
the rule-interpreter in a general way so as to allow for increasingly sophisticated ways of 
specifying tactics. 

6.3 Tactical Picture 

Commanders need a repository in which all relevant information is integrated into a 
coherent “tactical picture.” This repository represents their perception of what is 
happening; it may contain incomplete, incorrect, or contradictory information. 
Information may be incorrect because of errors or due to latency. The S_Commander 
class has a generic SituationObject member for this purpose, but the class is 
essentially stubbed out (it just contains a list of contact reports). 
 
What is required is a class that sorts through contact reports sent to the commander and 
attempts to identify what type of asset (or other entity) generated the detection, what its 
alliance is, and what its current state is (including its current position and where it is 
headed). This process, called data fusion, is a very difficult problem, and an entire area of 
study in its own right.  

6.4 Plans 

Any commander object can have a plan. This consists of a time-stamped list of actions 
that the commander intends to execute. These actions can be removed from the list and 
executed individually or all at once. One upgrade would be to allow executing all actions 
whose time-stamp was less than a given time.  
 
Another issue concerns plan revision. As the simulation unfolds, a commander may 
receive information that makes him want to alter his plan. It should be convenient for the 
commander to add, remove, or replace actions in his plan (currently, he can only add and 
execute actions). Part of revising a plan entails canceling future events generated by 
executing actions whose time-stamp is ahead of the current time. Facilities should be 
built to make it easy to do this, for example by providing a method that would cancel all 
action events scheduled after a specific time. 
 
The definition of a plan could be made more flexible. One upgrade would be to allow 
sub-plans within a plan. The definition of a plan would be a recursive one: i.e. a plan 
consists of time-stamped actions and/or plans. Another enhancement would be to have 
contingent actions (or sub-plans) in a plan. These would be executed only if (or when) a 
previous action succeeds. For example, a commander may wish to send in bombers to 
attack a target only after the target's defensive weapons and sensors have been destroyed. 
 
Finally, it may be useful for a commander to send a plan to another commander (probably 
an order to a subordinate). This plan would be combined with (or replace) the recipient's 
current plan, and would eventually be executed. 
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6.5 Logistics 

In a war, supplying forces with food, fuel, weapons, equipment, medical supplies, parts, 
etc. is a huge, complex and daunting task. And yet, being able to do so effectively can be 
a decisive factor. 
 
A significant enhancement to SFSS would be the inclusion of base classes for modeling 
logistics. In order to perform certain activities, there is a prerequisite that necessary 
supplies be on hand. For example, you cannot send jets out on a strike mission unless 
sufficient fuel and weapons are available.  
 
This dovetails with the idea of contingent actions in a plan: one cannot perform an action 
unless (or until) certain other logistical actions have been accomplished (such as the 
delivery of fuel and weapons). In general, there are certain activities that consume 
supplies, and others that replenish them. Also, there are rates of 
consumption/replenishment associated with these activities, and possibly “granularity” 
levels (e.g. certain items might be packaged in fixed-sized quantities for resupply). 
 
Another way in which logistics fits into the existing framework has to do with tactics. 
Logistical tactics could be formulated to anticipate what supplies are needed where, and 
when. Simulating the logistical aspects of warfare can be an important part of the 
planning process. 

6.6 MOE Classes 

When using simulations for analysis, the “bottom line” is the collection of MOEs output 
by the program. These measures summarize the outcome of the scenario. An 
enhancement to SFSS would be to provide base classes to aid in building and collecting 
MOEs. 
 


